# HORIBA

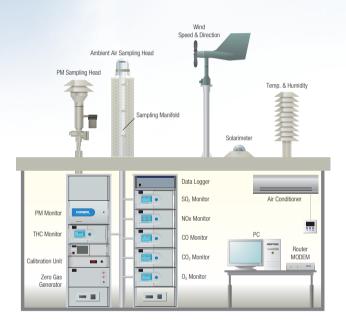
Air Pollution Monitor AP-370 Series





AQMS

Air Quality Monitoring System


# Air Pollution Monitor

# AP-370 Series

# Precise, Reliable, Easy maintainance

HORIBA has more than 50 years experience providing ambient monitoring solutions, recognized around the world. HORIBA has supplied over 15,000 units with the major share in many regions. The monitoring station is tailor-made according to the customer's request. HORIBA can provide several types of stations, cabinets, calibration equipment and more to meet your challenging monitoring requirements.





# AQMS Air Quality Monitoring System





### **Gas and Particulate Monitor**

| CO               | APMA-370 ····· P.2        |
|------------------|---------------------------|
| CO <sub>2</sub>  | APCA-370 P.2              |
| SO <sub>2</sub>  | APSA-370 ····· P.3        |
| H <sub>2</sub> S | APSA-370/CU-1 · · · · P.3 |
| NOx              | APNA-370 · · · · P.4      |
| NH3              | APNA-370/CU-2····· P.4    |
| Оз               | APOA-370 P.5              |
| THC              | APHA-370 P.6              |
|                  | APDA-371 P.7              |
| РМ               | APDA-375A P.7             |
|                  | APDA-372 P.7              |
| Element          | PX-375 ···· P.8           |

# Peripheral Equipment for QA/QC

| Ozone Gas Generator                              |      |
|--------------------------------------------------|------|
| OZGU-370SE · · · · · · · · · · · · · · · · · · · | P. 5 |
| Hydrogen Generator                               |      |
| OPGU series ·····                                | P. 6 |
| Multi Gas Generator                              |      |
| APMC-370 · · · · · · · · · · · · · · · · · · ·   | P.10 |
| SGGU-610/640 ·····                               | P.10 |
| Zero Gas Calibrator                              |      |
| ZNV-7 · · · · · · · · · · · · · · · · · · ·      | P.10 |
| Data management                                  |      |
| Data Logger                                      |      |
| (IOX-370: I/O Expander) ······                   | P.10 |
| Data management and Reporting Software           |      |
| (ECO Web)                                        | P. 9 |
|                                                  |      |

# **Ambient CO Monitor**

# APMA-370

CE TÜV (EU) FCC U.S. EPA Japan China Korea MCERTS (UK) GOST (Russia)

# Measurement component





## > Features

- Cross-flow non-dispersive infrared detector; Low range: 0-5 ppm F.S.
- AS type (anti-shock) interference-compensating detector and purifier for reference gas.
- Reference gas purifier oxidizes CO to CO<sub>2</sub> to eliminate interferences.
- Optics remain free of foreign matter with elimination of reflecting mirrors.

# > Principle

### Cross-flow modulation non-dispersive infrared (NDIR) absorption technology

Conventional technology uses an optical chopper to obtain modulation signals. Instead, the APMA-370 uses solenoid valve cross flow modulation. Fixed amounts of the sample gas and the reference gas are injected alternately into the measurement cell. With the cross flow modulation method, if the same gas is used for both the sample gas and the reference gas (e.g., zero gas could be used for both), no modulation signal will be generated. This has the great advantage that, in principle, when analyzing minute amounts of gas there is no generation of zero-drift. An additional advantage is that the elimination of rotary sectors precludes the need for optical adjustment. These features assure greatly improved stability over long periods of measurement. A further improvement is that in the front chamber of the detector, the measurable components, including interference components, are detected; in the rear chamber, only interference components are detected. By means of subtraction processing, the actual signal obtained is one that has very little interference.

# Specifications

**Principle:** Cross flow modulation, non-dispersive infrared (NDIR) absorption technology

Application: CO in ambient air

Range: Standard range: 0-10/20/50/100 ppm, 0-5/10/20/50 ppm

Optional range: 5 ranges selectable from 0-100 ppm range within 10 times range. Range selection: Auto or manually ranges selectable. Can be switched by remote operation.

Lower detectable limit: 0.02 ppm (3σ)

Repeatability: ±1.0% of F.S. Linearity: ±1.0% of F.S.

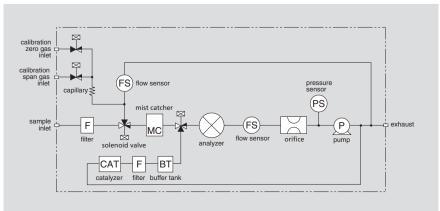
**Zero drift:** < LDL/day at lowest range < 0.2 ppm/week at lowest range

Span drift: <LDL/day at lowest range ±1.0% F.S./week Response time (T<sub>90</sub>): Within 50 sec at lowest range

Sample gas flow rate: Approx. 1.5 L/min Calibration gas: Span: CO, Zero: Zero gas

Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in catalyzer, etc. On-screen messages are available in four languages: English, German, French, and Japanese. Input/output: • 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) • Contact input/output • RS-232C (option)


Ambient temperature: 5-40°C

Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

Dimensions: 430(W)×550(D)×221(H) mm

Mass: Approx. 16 kg

# > Flow sheet (Example)



# Ambient CO<sub>2</sub> Monitor

APCA-370



Measurement component :

**Principle:**Cross-flow modulation, infrared (NDIR) absorption technology

Specification:

Range: 0 ppm to 500/1000 ppm

Lower detectable limit: 0.5 ppm (20) Repeatability: ±1.0% of F.S.

Linearity: ±2.0% of F.S.

Zero drift: ±1.0 ppm/day

±2.0 ppm/week (ambient temperature change: within 5°C)

Span drift: ±2.0% of F.S./day ±3.0% of F.S./week (ambient temperature change: within 5°C)

Response time (T<sub>90</sub>): 60 sec or shorter Sample gas flow rate: Approx. 0.7 L/min

Indication: Measured value, alarm, time, alarm history, calibration history, etc.

Alarms: Zero calibration, Span calibration, etc.

# Ambient SO<sub>2</sub> Monitor

APSA-370



# > Measurement component





# > Features

- UV-fluorescent detector resistant to moisture interference; Low range: 0-0.05 ppm F.S.
- Alternately to FDP measurements, the detector design is highly SO2 selective and requires no supplemental gas.
- Integral HC-cutter with a selective membrane eliminates interfering components.
- Incorporates a lamp intensity compensator.
- Uses a built-in inert PTFE sample inlet filter.

# > Principle

### **UV** fluorescence

The UV fluorescence method operates on the principle that when the SO<sub>2</sub> molecules contained in the sample gas are excited by ultraviolet radiation they emit a characteristic fluorescence in the range of 220-420 nm. This fluorescence is measured and the SO<sub>2</sub> concentration is obtained from changes in the intensity of the fluorescence.

The reactive mechanism is

 $\begin{array}{lll} \text{(1) } SO_2 + hv_1 {\rightarrow} SO_2 {}^* & \text{(2) } SO_2 {}^* {\rightarrow} SO_2 + hv_2 \\ \text{(3) } SO_2 {}^* {\rightarrow} SO_+ (O) & \text{(4) } SO_2 {}^* {+} M {\rightarrow} SO_2 {+} M \\ \end{array}$ 

Here, (1) shows the excited state of the SO<sub>2</sub> molecules that have absorbed the amount of energy hv<sub>1</sub> by ultraviolet radiation. (2) shows the amount of energy, hv<sub>2</sub> emitted by the excited molecules as they return to the ground state. (3) shows the decomposition by the light emitted from the excited molecules. (4) shows the quenching, i.e., the energy lost by the excited molecules colliding with other molecules. The APSA-370 uses an Xe lamp as the light source, and the fluorescent chamber design minimizes scattered light. The optical system has been carefully designed with low background light, making it possible to take measurements with a highly stable zero point. In addition, a reference detector monitors any fluctuation in the intensity of the light source. This allows the unit to calibrate itself automatically for sensitivity, resulting in greater span stability.

# ➤ Specifications

**Principle:** UV fluorescence (UVF) **Application:** SO<sub>2</sub> in ambient air

Range: Standard range: 0-0.05/0.1/0.2/0.5 ppm

Optional range: 5 ranges selectable from 0-10 ppm range within 10 times range. Range selection: Auto or manually ranges selectable. Can be switched by remote operation.

Lower detectable limit: 0.5 ppb (3o) Repeatability: ±1.0% of F.S.

Linearity: ±1.0% of F.S.

Response time (T90): Within 120 sec at lowest range

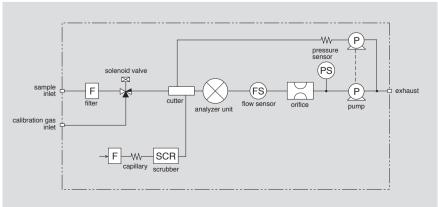
**Sample gas flow rate:** Approx. 0.7 L/min **Calibration gas:** Span: SO<sub>2</sub>, Zero: Purified Air

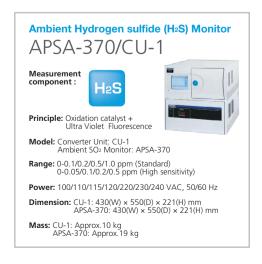
Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in catalyzer, etc.

On-screen messages are available in four languages: English, German, French, and Japanese Input/output: • 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) • Contact input/output • RS-232C

(option)


Ambient temperature: 5-40°C


**Power:** 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

 $\textbf{Dimensions:}~430 (W) \times 550 (D) \times 221 (H)~mm$ 

Mass: Approx. 19 kg

# ➤ Flow sheet (Example)





# **Ambient NOx Monitor**

APNA-370



# > Measurement component





## > Features

- Continuous NOx, NO, NO<sub>2</sub> measurements using a dual cross-flow single chemiluminescence detector and referential calculation.
- HORIBA original detector (Silicon photodiode sensor) respond to gas concentration quickly.
- Stable, repeatable measurements; Low range: 0-0.1 ppm F.S.
- Includes auto-recycle internal drier to make dry air for generating ozone gas
- Base configuration includes: O₃ drier unit, O₃ decomposer, reference gas generator and sample pump.

# > Principle

# Cross flow modulation type, reduced pressure chemiluminescence (CLD)

The chemiluminescence method uses the reaction of NO with  $O_3$ 

NO+O<sub>3</sub>→NO<sub>2</sub>\*+O<sub>2</sub>

 $NO_2*\rightarrow NO_2+hv$ 

A portion of the NO<sub>2</sub> generated as the result of this reaction becomes NO<sub>2</sub>\*. As these excited molecules return to the ground state, chemiluminescence is generated in the range of 600 nm to 3,000 nm. The light intensity is in proportion to the concentration of NO molecules and by measuring it we obtain the NO concentration of the sample. A deoxidation converter changes the NO<sub>2</sub> to NO, which is measured. In other words, the NO<sub>2</sub> concentration can be obtained by the difference between (1) the NOx concentration measured when the sample gas is directed through a converter and (2) the NO concentration measured when the gas is not run through the converter.

# ➤ Specifications

Principle: Cross flow modulation type, reduced pressure chemiluminescence (CLD)

**Application:** NO<sub>2</sub>, NO and NOx in ambient air **Range:** Standard range: 0-0.1/0.2/0.5/1.0 ppm

Optional range: 5 ranges selectable from 0-10 ppm range within 10 times range.

Range selection: Auto or manually ranges selectable. Can be switched by remote operation.

Lower detectable limit: 0.5 ppb (3σ)

Repeatability: ±1.0% of F.S. Linearity: ±1.0% of F.S.

Zero drift: <LDL/day, at lowest range ±1.0 ppb/week at lowest range

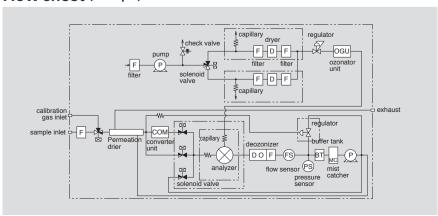
**Span drift:** <LDL/day at lowest range ±1.5% of F.S./week **Response time (T90):** Within 90 sec at lowest range

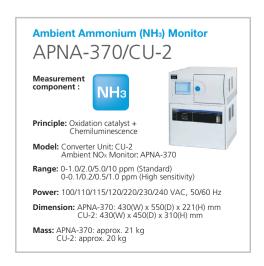
Sample gas flow rate: Approx. 0.8 L/min Calibration gas: Span: NO, Zero: Purified Air

Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in converter, etc.

On-screen messages are available in four languages: English, German, French, and Japanese
Input/output: • 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and
integrated or (2) moving average value) • Contact input/output • RS-232C (option)


Ambient temperature: 5-40°C


Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

Dimensions: 430(W)×550(D)×221(H) mm

Mass: Approx. 21 kg

# > Flow sheet (Example)





# Ambient O<sub>3</sub> Monitor

# APOA-370

CE TÜV (EU) FCC U.S. EPA China Korea
MCERTS (UK) GOST (Russia)

# > Measurement component





# > Features

- Cross-flow modulated ultra-violet absorption detector; Low range: 0-0.1 ppm F.S.
- Heated de-ozonator removes any O₃ in the reference gas to:
  - Reduce interference
  - Eliminate moisture interference
  - Prolong life-cycle of the UV lamp
- Only inert materials (glass or PTFE) contact sample.

# > Principle

Cross-flow modulation type, Non dispersive ultra-violet absorption method (NDUV)

The ultra-violet absorption method works on the principle that ozone absorbs ultra-violet rays in the area of 254 nm. Measurements are taken from continuous, alternate injections of the sample gas and the reference gas into the measurement cell, controlled by a long-life solenoid valve. The cross flow modulation method is characteristically zero-drift free. A comparative calculation circuit automatically compensates for all fluctuations in the mercury vapor light source and in the detector. This means that, in principle, the APOA-370 makes it possible to carry out zero-span drift free, continuous measurements. In addition, HORIBA's unique de-ozonator for the comparison gas line is unaffected by interference elements or moisture retention, prolonged, stable measurement is possible.

# **>** Specifications

Principle: Cross flow modulation type, Ultra-violet-absorption method (NDUV)

Application: O3 in ambient air

Range: Standard range: 0-0.1/0.2/0.5/1.0 ppm

Optional range: 5 ranges selectable from 0-10 ppm range within 10 times range.

Range selection: Auto or manually ranges selectable. Can be switched by remote operation.

Lower detectable limit: 0.5 ppb (3σ)

Repeatability: ±1.0% of F.S. Linearity: ±1.0% of F.S.

**Zero drift:** <LDL/day at lowest range <LDL/week at lowest range **Span drift:** <LDL/day at lowest range <LDL/week at lowest range

Resposnse time (T<sub>90</sub>): Within 75 sec at lowest range

Sample gas flow rate: Approx. 0.7 L/min Calibration gas: Span: O<sub>3</sub>, Zero: Purified Air

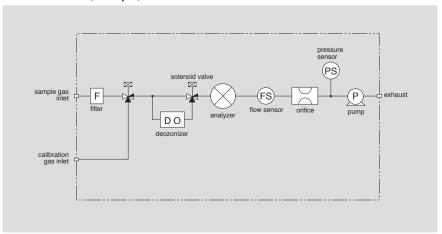
Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in ozone separator,

light intensity error, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output: • 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) • Contact input/output • RS-232C (option)


Ambient temperature: 5-40°C

Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

 $\textbf{Dimensions:}~430(\text{W}){\times}550(\text{D}){\times}221(\text{H})~\text{mm}$ 

Mass: Approx. 15 kg

# > Flow sheet (Example)





# **Ambient THC Monitor**

APHA-370



# > Measurement component





# > Features

- Flame ionization detector with selective combustion simultaneously measures THC, NMHC, and CH4.
- Single detector eliminates zero drift; Low range: 0-5 ppmC F.S.
- Integrates relative sensitivity correction for CH<sub>4</sub> and NMHC.
- Integrates a reference and combustion air generator, NMHC cutter and sample pump.
- Requires H2 as fuel gas for the FID.

# > Principle

# Flame ionization detection method (FID) with selective-combustion

The flame ionization detection method (FID) — used in combination with the selective-combustion system — utilizes the ionization that occurs as theresult of the high-temperature energy from combustion at the tip of the burner jet when organic carbon compounds are introduced into the hydrogen flame. The hydrogen flame is located between two electrodes. When an electrical voltage is applied across these electrodes a minute ion current proportional to the hydrogarbon

minute ion current proportional to the hydrocarbon concentration is produced. This current is monitored by a low leakage amplifier, giving a voltage readout for THC. To measure CH4 the sample gas is passed through the selective catalytic combustion unit (the NMHC cutter), which oxidizes NMHC without oxidizing CH4. This is shown as A below. B represents the THC concentration measured without passing the gas through the NMHC cutter. Thus B - A will give the concentration of NMHC. The final concentration value is calculated using a relative-sensitivity correction coefficient, k, as shown below.

CH4 Concentration ANMHC Concentration k (B - A)THC Concentration A + k (B - A)

# > Specifications

Principle: Flame ionization detection (FID) with selective combustion

**Application:** THC, NMHC, and CH<sub>4</sub> in ambient air **Range:** Standard range: 0-5/10/20/50 ppmC

Optional range: 5 ranges selectable from 0-100 ppmC range within 10 times range. Range selection: Auto or manually ranges selectable. Can be switched by remote operation.

Lower detectable limit: 0.022 ppmC (3σ)

Repeatability: ±1.0% of F.S. Linearity: ±1.0% of F.S.

Zero drift: <LDL/day at lowest range ±0.05 ppmC/week at lowest range

Span drift: <LDL/day at lowest range ±0.5% F.S./week Response time (T90): Within 60 sec at lowest range

Sample gas flow rate: Approx. 0.9 L/min Calibration gas: Span: CH<sub>4</sub>, Zero: Purified Air

Indication: Measured value, range, alarm, maintenance screen

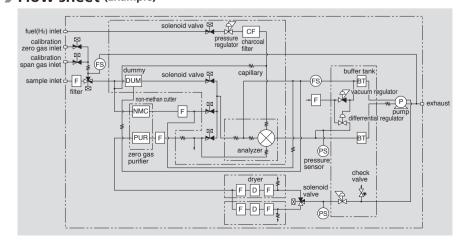
**Alarms:** During AIC, zero calibration error, span calibration error, temperature error in zero gas

purifier, ignition failure error, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output: • 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) • Contact input/output • RS-232C (option)

Ambient temperature: 5-40°C


Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

 $\textbf{Dimensions:}~430(\text{W}){\times}550(\text{D}){\times}221(\text{H})~\text{mm}$ 

Mass: Approx. 33 kg

Notes: ppmC is shown as symbol, not as unit.

# > Flow sheet (Example)





# Beta-Ray Attenuation type **Dust Analyzer**



# Measurement component



# > Principle

Beta-ray attenuation



- Long term unattended remote operation of up to 60 days between site visits
- Hourly filter advances minimize effects of volatile compounds
- Integrated data logger allows the connection of up to six additional

# Specifications

**Principle:** Beta Ray attenuation Application: PM2.5, PM10, TSP

**Standard Range:** 0-1.000 mg/m³ (0-1000 μg/m³)

Optional Ranges: 0-0.100, 0.200, 0.250, 0.500, 2.000, 5.000, 10.000 mg/m<sup>3</sup>

(special applications)

**Repeatability:** ±2.0% of F.S. at 1000/5000/10000 µg/m<sup>3</sup> range **Linearity:** ±3.0% of F.S. at 1000/5000/10000 μg/m<sup>3</sup> range **Zero drift:** ±20 μg/m³/day at 200/500/1000/5000/10000 μg/m³

Span drift: ±30 µg/m³/day at 200/500 µg/m³ range ±3.0% of F.S. at 1000/5000/10000 µg/m3 range

Sample gas flow rate: Approx. 16.7 L/min Alarms: Tape failure, Flow rate failure, etc.

Input/output: 0-1 V, pulse signal, Contact Input/Output(Range, Power failure, alarm, etc.)

Option: RS-232C, LAN connecting terminal(TCP/IP)

Operating temperature: 0-50°C **Power:** 100-230 VAC, 50/60 Hz Dimensions: 430(W)×400(D)×310(H) mm Mass: Approx. 24.5 kg without external accessories



# Light Scattering type Dust Analyzer



# Measurement component



# > Principle

Optical light scattering

# Features

- Continuous real-time measurement of PM values simultaneously with additional information through particle number concentration
- Time resolution adjustable from 1sec up to 24hr
- LED light source with high stability, long lifetime and durability

# Specifications

**Principle:** Optical light scattering Application: PM1, PM2.5, PM10, TSP Range(Particle size): PMtot (0.18-18 μm) Range(Number): 0-20,000 particle/cm<sup>3</sup> Range(Mass): 0-1,500 μg/m<sup>3</sup> Time resolution: 1s-24h (or on demand)

Flow rate: 5.0 L/min

Working temperature: 0-35°C

Power: 115-230 VAC, 50-60 Hz Power consumption: 140 W

Dimensions: 450(W)×320(D)×190 or 185(H) mm

Mass: Approx. 9.3 kg

Interface: Touch display 800×480 pixels Data logger (Inclusive): 4 GB Compact Flash External connection: LAN, WiFi, RS-232/485, USB,

Optional external GRPS/UMTS modem



# **Continuous Particulate Monitor** with X-ray Fluorescence



# Measurement component





### > Features

- Continuous monitor of PM mass and the elemental concentration by a single unit directly in the field
- Advanced analysis method by world proven technologies
- HORIBA's newly developed filter tape provides excellent sensitivity and precise performance

# > Principle Mass unit: Beta-ray attenuation

Element unit: Energy dispersive

X-ray spectroscopy



# Specifications

#### Common

Measured object: Particulate matter (PM10, PM2.5, PM1, TSP)

**Measurement content:** Particulate mass concentration and element concentration

Flow rate: 16.7 L/min

Ambient operation temperature: 10°C~30°C Relative humidity: 0~80% RH noncondensing

**Power supply:** 100-240 VAC  $\pm 10\%$  (up to 250 V), 50/60 Hz  $\pm 1$  Hz

Power consumption: Approx. 400 VA

External dimension: 430(W)×560(D)×285(H) mm

(without sampling pipe and measurement head)

Mass: Approx. 49 kg

Data output: CSV file (Average PM mass and elemental concentration)

External connection: Ethernet<sup>™</sup>, USB

### Mass unit

Measurement method: Beta-ray attenuation

PM10: US EPA Louvered PM10 Inlet PM2.5: VSCC™ Cvclone

PM1: SSC™ Cyclone TSP: TSP Inlet

**Measurement range:** 0~200/500/1000 μg/m³ Repeatability: ±2% (against reference foil value)

Span drift: ±3% (24 hours)

Lowest detection limit (2σ): ±4 μg/m³ (24 hours)

Sampling and measurement cycle: 0.5/1/2/3/4/6/8/12/24 hours

### Element unit

Measurement method: Energy dispersive X-ray spectroscopy

**Detectable elements:** Standard parameter is

Al, Si, S, Ti, Cr, Mn, Ni, Cu, Zn, Pb, K, Ca, V, Fe, As.

See Table 2 "Detectable Elements"

**Detector:** SDD (Silicon Drift Detector) Sample image: CMOS camera

Lowest detection limit (2σ): Recommended EPA Method IO 3.3

See Table 1 "Lowest Detection Limit (Example)"

Analysis time: 500s as standard

100/200/500/1000/2000/5000/10000s selectable Calibration material for X-ray intensity for standard parameter:

NIST SRM 2783, other materials (option)

Safety functions for X-ray: Internal lock system, Key switch, X-ray indication light

# Lowest Detection Limit (Example) (2 0) (ng/m³) (Table 1)

| Element    | I    | Analysis time (sec | .)    |
|------------|------|--------------------|-------|
| Elelliellt | 100  | 1000               | 10000 |
| Ti         | 26.5 | 8.4                | 2.6   |
| Cr         | 4.5  | 1.4                | 0.4   |
| Mn         | 5.8  | 1.8                | 0.6   |
| Cu         | 5.7  | 1.8                | 0.6   |
| Zn         | 3.0  | 1.0                | 0.3   |
| Se         | 3.4  | 1.1                | 0.3   |
| Ag         | 15.8 | 5.0                | 1.6   |
| Cd         | 35.9 | 11.3               | 3.6   |
| Sn         | 38.4 | 12.2               | 3.8   |
| Hg         | 7.7  | 2.4                | 0.8   |
| Pb         | 5.3  | 1.7                | 0.5   |

\* LDL ( $\sigma$ ) is half of the LDL ( $2\sigma$ )

| De    | Detectable Elements (Table 2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |    |     |    |    |    |     |    |     |    |     |    |     |     |
|-------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|-----|----|----|----|-----|----|-----|----|-----|----|-----|-----|
| Н     | Detectable Elements           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |    |     |    |    |    |     |    | Не  |    |     |    |     |     |
| Li    | Ве                            | Be The state of th |    |    |    |     |    |    |    |     | В  | С   | Ν  | 0   | F  | Ne  |     |
| Na    | Mg                            | Лg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |    |    |     |    |    |    |     |    | Al  | Si | Р   | S  | CI  | Ar  |
| K     | Ca                            | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ti | ٧  | Cr | Mn  | Fe | Со | Ni | Cu  | Zn | Ga  | Ge | As  | Se | Br  | Kr  |
| Rb    | Sr                            | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zr | Nb | Мо | Тс  | Ru | Rh | Pd | Ag  | Cd | In  | Sn | Sb  | Те | 1   | Xe  |
| Cs    | Ва                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hf | Та | W  | Re  | Os | lr | Pt | Au  | Hg | TI  | Pb | Bi  | Ро | At  | Rn  |
| Fr    | Ra                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rf | На | Sg | Bh  | Hs | Mt | Ds | Rg  | Cn | Unt | FI | Unp | Lv | Uus | Uno |
|       |                               | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | _  | _  | N 1 | _  |    | -  | 0.1 | T1 | _   |    | _   | _  | 2/1 |     |
| lanth | nanoid                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | La | Се | Pr | Nd  | Pm | Sm | Eu | Gd  | Tb | Dy  | Но | Er  | Im | Yb  | Lu  |
| ac    | tinoid                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ac | Th | Pa | U   | Np | Pu | Am | Cm  | Bk | Cf  | Es | Fm  | Md | No  | Lr  |

- \* Standard parameters, calibrated by standard calibration materials.
- \* For measurement of element concentration calibration by standard calibration materials is needed.
- \* Please contact separately about elements, marked as non-detectable.

### Sampling Filter

### HORIBA's newly developed filter tape provides excellent sensitivity and precise performance Feature:

- · 2 layer non-woven PTFE fabric filter construction prevents passing of PM onto the reverse side.
- Due to the extremely low-impurity concentration, the filter enables ultra low concentratin analysis. · Chemical background of the filter tape is extremely low. Therefore the filter with collected sample could be used for chemical analysis by other scientific analytical instruments. (ICP-MS etc.)

- No. 8012231 USA Patent • CHINA Patent No. ZL200410032415.3
- IAPAN Patent No. 4590367 No. 4387164
- GERMAN Patent No. 102004018260



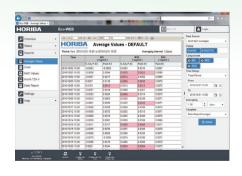


# AQMS Air Quality Monitoring System

The Air Quality Monitoring System (AQMS) is a facility to measure wind speed, direction, other weather parameters, concentration of air pollutants (such as SO<sub>2</sub>, NO<sub>x</sub>, CO, O<sub>3</sub>, THC etc), and particulate matters continuously all year round. Mobile AQMS can also be customized to monitor multiple sites via one system.







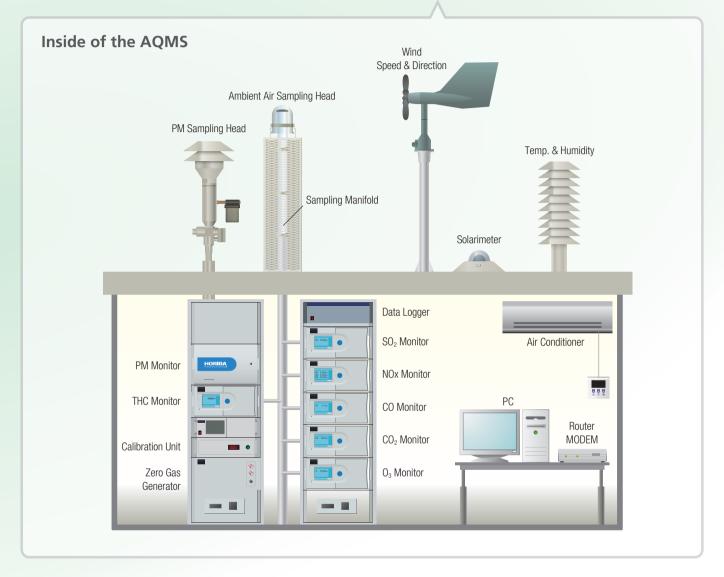

# **Data Management and Reporting Software**

ECO Web

- Collect data from Ambient Air Monitoring Stations
- Manage and store collected data
- Provide reports based on stored data








# Inside of AQMS (Examples)









# **Multi Gas Calibrator**

APMC-370

NO, SO<sub>2</sub>, CO, CO<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>S, NH<sub>3</sub> (Other parameters are also available)



# SGGU-610/640

NO, SO<sub>2</sub>, Zero gas



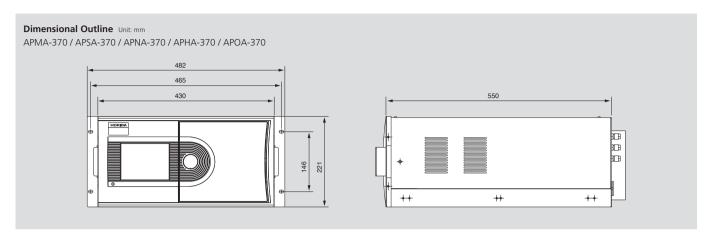
# **Zero Gas Generator** ZNV-7

Zero gas



# Data Logger

IOX-370: I/O Expander


Collection, average calculation, storage and transfer to a central location of environmental data



<sup>\*</sup>HORIBA provides local solutions for air quality monitoring such as data management software and calibrator etc. Please contact to HORIBA for the detail.

# > Standard 19-inch Packages

Each HORIBA AP-370 Series Monitor is packaged in a light metal enclosure with sliding chassis suitable for either a table-top set-up in a research laboratory or mounting on a standard 19-inch rack for permanent installation. All the controls and serviceable components are accessible from the front for easy maintenance while the plumbing and cable connections are neatly arranged at the back.



These icons represent following measurement act in each country.

Japan Measurement Act in Japan

China PATTERN APPROVAL CERTIFICATE OF THE MEASURING INSTRUMENTS OF THE PEOPLE'S REPUBLIC OF CHINA

Korea Type Approval Certificate of Environmental Instrument

\*The specifications described in this catalog depend on usage environment.



The HORIBA Group adopts IMS (Integrated Management System) which integrates Quality Management System ISO9001, Environmental Management System ISO14001, and Occupational Health and Safety Management System ISO45001.

We have now integrated Business Continuity Management System ISO22301 in order to provide our products and services in a stable manner, even in emergencies.



Please read the operation manual before using this product to assure safe and proper handling of the product.

- The specifications, appearance or other aspects of products in this catalog are subject to change without notice
- Please contact us with enquiries concerning further details on the products in this catalog.
   The color of the actual products may differ from the color pictured in this catalog due to printing limitations.
- It is strictly forbidden to copy the content of this catalog in part or in full.
   The screen displays shown on products in this catalog have been inserted into the photographs through compositing.
- •All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.



HORIBA, Ltd. Group Head Office Phone: 81 (75) 313-8121 Fax: 81 (75) 321-5725 https://www.horiba.com/int/



Worldwide locations of HORIBA

Bulletin:HRE-2858Ga Printed in Japan 2405SK00

# HORIBA

Multi-Component Gas Analyzer

# VA-5000/VA-5000WM Series

Sample Gas Conditioning System

VS-5000 Series



Explore the future HORIBA

# Simple, Flexible, and Reliable! Multi-Component Gas Analyzer VA-5000/

# Flexibility for Various Applications

- Provides wide selection of measurement range; from parts per million (ppm) to percent concentration.
- Capability to simultaneously measure up to four gas components.
  - \* Refer to the specifications table on page 3 for possible combination of modules.
- Automatic internal correction of measurements, such as oxygen (O<sub>2</sub>) corrected value. No need for additional external programmable logic controller (PLC).
- Thermostat for optical unit allows use in tougher sample gas conditions.

# MEASUREMENT # 09/14 14:16 NO 168.7 ppm 500 SO2 104.0 ppm 200 CO 13.2 ppm 200 O2 5.39 vol% 25

# **User-Friendly Features**

- The 5.7-inch touchscreen LCD with real-time trend graph analysis provides easy recognition of measurement value stabilization.
- Compact size: Enable easy replacement and installation within tight spaces VA-5000 (19-inch panel mount type): 430 mm (W)  $\times$  380 mm (D)  $\times$  132 mm (H) VA-5000WM (Wall mount type): 424 mm (W)  $\times$  206 mm (D)  $\times$  484 mm (H)
- $\bullet$  Operates in standard Modbus  $^{\text{TM}}$  TCP communication with optional analog and digital I/O.
- Continuous data for up to 15 days can be stored via 1 GB USB.
- \* Modbus is a trademark of Schneider Electric Inc.

# 



# Plug and Play Functions

- Modular design enables quick replacement of analyzer bench, which reduces downtime.
- No need to prepare any time-consuming adjustments at site.
- Just easily plug the connection lines and upload the settings data via USB.





# VA-5000WM Series

# Other Features

- Auto-calibration function together with the VS-5000 sampling unit, or with external solenoid valves.
- Blowback control function enabling measurement of sample gases with high dust concentration. VA-5000 series can control blowback via digital output with an internal sequencer.
   \*Please consult HORIBA for further details.
- Multiple analog outputs feature, maximum of eight (8) channels, even for the same parameter.
   \*Please consult HORIBA for further details.
- Self-diagnosis function enables high/low concentration alarms, calibration error alarm, etc.
- Internal signal data view and logging capabilities for quick system diagnostics, such as "internal temperature control data", "detector voltage signal", etc. Data transfer to users' data logger can be done via Modbus™ TCP.



# Sample Gas Conditioning System VS-5000 Series

- Compact, can be easily mounted to a 19-inch rack.
- ullet All sample conditioning components (pumps, coolers, filters, flow controls, NO $_{\rm X}$  converter, etc.) are integrated into a single case.
- Depending on the application, one (1) unit of VS-5000 may support up to two (2) VA-5000 units.

\*Please consult HORIBA for further details



# **Application Examples**

- The VA-5000 series provides wide range of measurement capabilities for research and development (R&D), for quality control (QC), and/or as continuous emission monitoring system (CEMS).
  - CEMS
- Emission monitoring of N₂O for sludge waste incinerator
- Selective catalytic reduction (SCR) research
- Fuel cell research
- Green house gases (GHG) research
- Animal farming's metabolism research
- Calibration gas quality control

- Combustion appliance quality control
- Small boilers' combustion efficiency control
- Monitoring of biogas, e.g. biogas during fermentation of biodegradable materials
- Steel production plants' process control, like direct-reduced iron (DRI) manufacture monitoring
- Water treatment plants' aeration tank's O2 monitoring
- Shape memory shirts' production process control
- Combustion furnace process control for ceramic production (porcelain, sanitary ware, advanced materials, etc.)

# Customized combination of modules and sampling units satisfies diverse measurement needs.

|        |                                        |            | NDIR1                 | NDIR2                               | NDIR3     | CLA    | MPA |                | Dumb<br>Bell |         |         | ng Unit |         |
|--------|----------------------------------------|------------|-----------------------|-------------------------------------|-----------|--------|-----|----------------|--------------|---------|---------|---------|---------|
| Module | Aı                                     |            | CO·CO <sub>2</sub> ·C | CH <sub>4</sub> ·N <sub>2</sub> O·N | O·SO₂·NH₃ | NO/NOx |     | O <sub>2</sub> |              | VS-5001 | VS-5002 | VS-5003 | VS-5004 |
|        | VA-5001                                | VA-5001WM  | •                     |                                     |           |        |     |                |              | •       |         |         |         |
|        | VA-5002                                | VA-5002WM  |                       |                                     |           | •      |     |                |              |         |         | •       |         |
| 1      | VA-5003                                | VA-5003WM  |                       |                                     |           |        | •   |                |              |         | •       |         |         |
|        | VA-5004                                | VA-5004WM  |                       |                                     |           |        |     | •              |              | •       |         |         |         |
|        | VA-5006                                | VA-5006WM  |                       |                                     |           |        |     |                | •            | •       |         |         |         |
|        | VA-5011                                | VA-5011WM  | •                     | •                                   |           |        |     |                |              | •       |         |         |         |
|        | VA-5012                                | VA-5012WM  | •                     |                                     |           | •      |     |                |              |         |         | •       |         |
|        | VA-5013                                | VA-5013WM  | •                     |                                     |           |        | •   |                |              |         | •       |         |         |
| 2      | VA-5014                                | VA-5014WM  | •                     |                                     |           |        |     | •              |              | •       |         |         |         |
| 2      | VA-5016 VA-5016WM<br>VA-5023 VA-5023WM | VA-5016WM  | •                     |                                     |           |        |     |                | •            | •       |         |         |         |
|        |                                        | VA-5023WM  |                       |                                     |           | •      | •   |                |              |         |         |         | •       |
|        | VA-5024                                | VA-5024WM  |                       |                                     |           | •      |     | •              |              |         |         | •       |         |
|        | VA-5026                                | VA-5026WM  |                       |                                     |           | •      |     |                | •            |         |         | •       |         |
|        | VA-5111                                | VA-5111WM  | •                     | •                                   | •         |        |     |                |              | •       |         |         |         |
|        | VA-5112                                | VA-5112WM  | •                     | •                                   |           | •      |     |                |              |         |         | •       |         |
|        | VA-5113                                | VA-5113WM  | •                     | •                                   |           |        | •   |                |              |         | •       |         |         |
| 3      | VA-5114                                | VA-5114WM  | •                     | •                                   |           |        |     | •              |              | •       |         |         |         |
| 3      | VA-5116                                | VA-5116WM  | •                     | •                                   |           |        |     |                | •            | •       |         |         |         |
|        | VA-5123                                | VA-5123WM  | •                     |                                     |           | •      | •   |                |              |         |         |         | •       |
|        | VA-5124                                | VA-5124WM  | •                     |                                     |           | •      |     | •              |              |         |         | •       |         |
|        | VA-5126                                | VA-5126WM  | •                     |                                     |           | •      |     |                | •            |         |         | •       |         |
| 4      | VA-5111G                               | VA-5111GWM | •                     | •                                   | •         |        |     | •              |              | •       |         |         |         |
| 4      | VA-5112G                               | VA-5112GWM | •                     | •                                   |           | •      |     | •              |              |         |         | •       |         |

<sup>\*</sup>Please consult us about Sampling Unit for VA-5000WM and further information.

## Wide selection for the multiple measurement ranges included in each module

| Measuring principle | Component          | Option range              |            |            | Zero drift         |                                                                                   |                    |                                                                                                         | Repeatability |
|---------------------|--------------------|---------------------------|------------|------------|--------------------|-----------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------|---------------|
| principle           |                    | High Sensitive Min. range | Min. range | Max. range | Standard range     | High Sensitive                                                                    | Standard range     | High Sensitive                                                                                          |               |
|                     | CO                 | 0-50 ppm                  | 0-200 ppm  | 0-100 vol% |                    |                                                                                   |                    |                                                                                                         |               |
|                     | CO <sub>2</sub>    | 0-50 ppm                  | 0-100 ppm  | 0-100 vol% |                    | ±2.0%/day<br>(CO : 0-50~99 ppm range,                                             |                    | ±2.0%/day<br>(CO : 0-50~99 ppm range,                                                                   |               |
|                     | CH₄                | 0-100 ppm                 | 0-200 ppm  | 0-100 vol% | 0.00/ /            | CO2: 0-50~99 ppm range,                                                           | 0.00//             | CO2: 0-50~99 ppm range,<br>SO2: 0-100~199 ppm range)                                                    |               |
| NDIR*2              | N <sub>2</sub> O   | NA                        | 0-100 ppm  | 0-5000 ppm | ±2.0%/week of F.S. | SO <sub>2</sub> : 0-100~199 ppm range)                                            | of F.S.            |                                                                                                         | ±0.5% of F.S. |
| NO                  | NO                 | NA                        | 0-500 ppm  | 0-1 vol%   |                    | ±1.0%/day<br>(CO : 0-100~199 ppm range,<br>CH <sub>4</sub> : 0-100~199 ppm range) |                    |                                                                                                         |               |
|                     | SO <sub>2</sub>    | 0-100 ppm                 | 0-200 ppm  | 0-10 vol%  |                    |                                                                                   |                    |                                                                                                         |               |
|                     | NH₃                | NA                        | 0-100 ppm  | 0-1000 ppm |                    | ,                                                                                 |                    | ,                                                                                                       |               |
| CLA                 | NO/NO <sub>x</sub> | NA                        | 0-20 ppm   | 0-5000 ppm |                    | ±2.0%/w                                                                           |                    | ±0.5% of F.S. (Range is more than 0 ppm to 100 ppm) ±1.0% of F.S. (Range is less than 0 ppm to 100 ppm) |               |
| MPA                 |                    | NA                        | 0-5 vol%   | 0-100 vol% | ±2.0%/w            | eek of F.S.                                                                       | ±2.0%/w            | eek of F.S.                                                                                             | ±0.5% of F.S. |
| Galvanic            | O <sub>2</sub>     | NA                        | 0-5 vol%   | 0-25 vol%  | ±1.0%/d            | ay of F.S.                                                                        | ±1.0%/d            | ay of F.S.                                                                                              | ±0.5% of F.S. |
| Dumb-Bell           |                    | NA                        | 0-5 vol%   | 0-100 vol% | ±2.0%/w            | eek of F.S.                                                                       | ±2.0%/week of F.S. |                                                                                                         | ±0.5% of F.S. |

Note 1: Select multiple measurement ranges within the above minimum and maximum range table in accordance to the following conditions.

[NDIR] Five (5) ranges; the highest range must be within the maximum limit ratio of 10x the lowest range.

Maximum limit of 20x the lowest range is also an available option, which may be limited by the cell length.

[CLA] Eight (8) ranges; the highest range must be within the maximum limit ratio of 100x the lowest range.

If the maximum range exceeds 2000 ppm, the minimum range should be at least 50 ppm or more.

[MPA] Five (5) ranges; the highest range must be within the maximum limit ratio of 10x the lowest range.

[Galvanic] Five (6) ranges; the highest range must be within the maximum limit ratio of 5x the lowest range.

[Dumb-Bell] Three (3) ranges; the highest range must be within the maximum limit ratio of 10x the lowest range.

Note 2: Please consult us for measurement of special gases or ranges.

<sup>\*1: 1%</sup> of span drift for NDIR is achievable with special adjustment at factory. Please consult us for further information.
\*2: Siloxane and TS (total sulfur) measurements are also available. Please consult us for further information.

# Various combinations of sensor modules provide excellent flexibility

The free combination of measurement modules, which utilizes different technologies to measure various gases, makes the VA-5000 series truly applicable to the diverse needs of gas analysis for process control, environmental monitoring, research and development (R&D) testing, etc. The sensors lineup includes: the dual-beam non-dispersive infrared (NDIR) absorption method, which measures seven (7) different gases in wide ranges; the chemiluminescence (CLA) method, which allows measurement of mono-nitrogen oxides (NOx) in low concentrations; and three (3) types of oxygen (O<sub>2</sub>) detectors that users may select from to meet measurement requirements.

# SO<sub>2</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, NO, NH<sub>3</sub>



### **Dual-beam Non-Dispersive Infrared Absorption Method**

As sample gas flow through the measurement cell, a beam of infrared energy (at a wavelength appropriate for the gas being measured) travels through the sample gas and strikes the infrared (IR) detector. The gas being measured absorbs infrared energy and reduces the energy reaching the IR detector. As a result, the pressure of the gas in the first chamber of the detector is reduced, causing gas to flow from the first chamber to the other. This gas flow passes over the precise temperature sensor between the chambers and reduces the resistance value of the sensor element. Since the resistance value was previously calibrated relative to a specific gas concentration, the measured resistance value can be displayed as a gas concentration reading for the sample gas. HORIBA's Micro Electro Mechanical Systems (MEMS) technology allows the manufacture of IR temperature sensor that is very small yet very sensitive, highly reliable, and vibration-resistant.

\*When using the NDIR carbon dioxide (CO<sub>2</sub>) analyzer, ensure that the background concentration of CO<sub>2</sub> in the operating environment is stable. \*CO interference for N<sub>2</sub>O measurement is eliminated by improved NDIR detector.

# NO/NOx



### Chemiluminescence Method

The mono-nitrogen oxides (NOx) analysis module uses the sensitive chemiluminescence (CLA) method, which permits NOx measurements for range as low as 0-20 ppm. The chemiluminescence analyzer has virtually zero interference. HORIBA's special technology and experience has effectively eliminated CO<sub>2</sub> quenching and water vapor interference.

O<sub>2</sub> Choose from three analysis methods for the oxygen (O<sub>2</sub>) analyzer module. Select the sensor module based on specific requirements and sample gas conditions.



# Magneto-Pneumatic

Highly accurate and stable measurement unaffected by coexisting gases or external vibration.



### Galvanic cell

Stable measurement with a compact and lightweight sensor.
(Battery life improved from 1 year to 3 years)



# **Dumb-Bell**

High accuracy, fast response time, and absolute linearity measurement advantages. No carrier gas required.

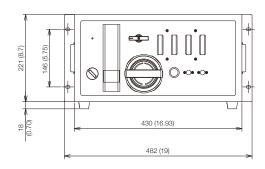
# Characteristics of O2 analyzers

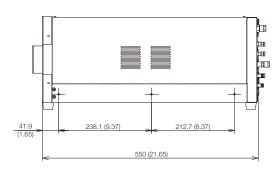
|                      |                                          | MPA | Galvanic | Dumb-Bell |
|----------------------|------------------------------------------|-----|----------|-----------|
| Performance          | Stability of design                      | •   |          | •         |
| renomance            | Warm-up and start-up performance         |     | •        |           |
| 0                    | Flammable gas is present                 | •   |          | •         |
| Sample gas condition | High-concentration acidic gas is present | •   |          |           |
| Condition            | Sample flow rate should be minimized     | •   |          | •         |
| Installation         | Carrier gas is not available             |     | •        | •         |
| environment          | VS-5000 sampling system is not used      |     | •        | •         |
| CHARGINICH           | Installation environmental is vibrating  |     | •        |           |
| Cost and             | Operation costs should be minimized      |     |          | •         |
| other factors        | Maintenance should be minimized          | •   |          | •         |

# **Specifications**

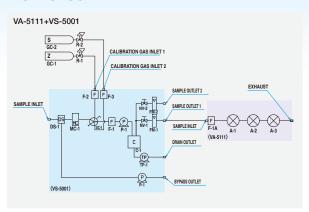
# VA-5000 / VA-5000WM Analyzer

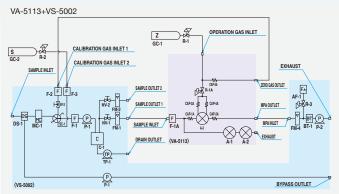
| Measurement                                                                       | principl      | е        | NDIR                                                                                                   | CLA                                                                  | MPA                                        | Galvanic cell                   | Dumb-Bel          |                  |        |  |
|-----------------------------------------------------------------------------------|---------------|----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|---------------------------------|-------------------|------------------|--------|--|
|                                                                                   | Linearity     | Standard | ±1.                                                                                                    | 0% F.S.                                                              |                                            |                                 |                   |                  |        |  |
| Performance                                                                       | Linearity     | Option   | ±2.0% F.S.(range ratio 1:20)                                                                           | -                                                                    | -                                          | _                               | _                 |                  |        |  |
| renomance                                                                         | Response time |          | ≤30 s (T90)*1                                                                                          |                                                                      |                                            | ≤45 s (T90)*1                   | ≤30 s (T90)       |                  |        |  |
| Warm-up time                                                                      |               |          | 60 min (90 min for SO <sub>2</sub> )                                                                   | 60 min                                                               | 60 min                                     | 40 min                          | 120 min           |                  |        |  |
|                                                                                   | Standar       | d        | 0.5 L/min                                                                                              | 0.5 L/min 0.3 L/min 0.5 L/min                                        |                                            |                                 |                   |                  |        |  |
| Flow rate                                                                         | Option        |          | 1.0 L/min*2 – 1.0 L/min*2                                                                              |                                                                      |                                            |                                 |                   |                  |        |  |
| Data storage                                                                      | Option        |          | USE                                                                                                    | 3 memory                                                             |                                            |                                 |                   |                  |        |  |
|                                                                                   |               | Input    | Maximum 4 ch, 0-16 mA / 4-                                                                             | 20 mA / 0-20 mA                                                      | or 0-1 V isolated                          |                                 |                   |                  |        |  |
|                                                                                   | Analog        | Output   | Maximum 8 ch, 0-16 mA / 4-20 mA / 0-20 mA or 0-1 V isolated,                                           |                                                                      |                                            |                                 |                   |                  |        |  |
|                                                                                   |               | Output   | Current output: load resistance < 750 C                                                                | Ω, Voltage output:                                                   | input impedance                            | > 100 kΩ                        |                   |                  |        |  |
| Input/Output<br>(option)                                                          |               | lanut    | Maximum 16 ch isolated, Open vo                                                                        | oltage: 24 V, Short                                                  | -circuit current 10                        | ) mA                            |                   |                  |        |  |
| (option)                                                                          | District      | Input    | Maximum load resistance < 5                                                                            | Maximum load resistance $< 50 \Omega$ , Minimum pulse width: 0.5 sec |                                            |                                 |                   |                  |        |  |
|                                                                                   | Digitai       | Digital  | Digital                                                                                                | Digital                                                              | Output                                     | Maximum 16 ch isolated, Maximun | n voltage DC 30 \ | , Maximum currer | nt 1 A |  |
|                                                                                   |               | Output   | Minimum voltage DC 0.                                                                                  | 1 V, Minimum cur                                                     | rent 0.1 mA                                |                                 |                   |                  |        |  |
| Communicatio                                                                      | n             |          | Ethernet (                                                                                             | Modbus™/TCP)                                                         |                                            |                                 |                   |                  |        |  |
| Sample gas conditions                                                             |               |          | Ambient temperature, dust free, H2O less than 5°C saturation, Pressure 0 to 490 Pa                     |                                                                      |                                            |                                 |                   |                  |        |  |
| Sample gas co                                                                     | mailions      |          | Other: Shall contain no corrosive g                                                                    | as, combustible                                                      | gas, and explosive                         | gas.                            |                   |                  |        |  |
| Gas connectio                                                                     |               |          | Inlet and outlet - 6 mm/4 mm PTFE: a single gas inlet is provided standard; the gas flows sequentially |                                                                      |                                            |                                 |                   |                  |        |  |
| Gas connectio                                                                     | ns            |          | from one module to the next; as an option separate gas inlets can be provided for each module.         |                                                                      |                                            |                                 |                   |                  |        |  |
| Gas tubing                                                                        |               |          | PTFE; stainl                                                                                           | ess steel optiona                                                    |                                            |                                 |                   |                  |        |  |
|                                                                                   |               |          | Sample Inlet: Rc 1/8(φ6/φ4 mm PTFE joint), Exhaust: φ6/φ4 mm PTFE joint                                |                                                                      |                                            |                                 |                   |                  |        |  |
| Joint                                                                             |               |          | Air Inlet: Rc 1/8(φ6/φ4 mm PTFE joint); installed C                                                    | LA. CLA: Exhaus                                                      | t: φ6/φ4 mm PTFE                           | joint; installed CL             | Α,                |                  |        |  |
|                                                                                   |               |          | MPA Outlet: $\phi 6/\phi 4$ mm PTFE joint; installed MPA                                               | , Zero gas Outlet:                                                   | $\phi$ 6/ $\phi$ 4 mm PTFE                 | joint; installed MPA            | A                 |                  |        |  |
| la stallation                                                                     |               |          | Temperature 0-45°C, Humidity 90% (No condensate                                                        | ion), Altitude Max                                                   | 3000 m (combina                            | ation with only NDII            | ₹),               |                  |        |  |
| Installation co                                                                   | naitions      |          | (combination with Zirconia, Galvani, MPA, and                                                          | I CLA: max 2000 i                                                    | m), No fluctuation                         | of backpressure                 |                   |                  |        |  |
| Protection deg                                                                    | ree           |          | Equiva                                                                                                 | lent to IP20                                                         |                                            |                                 |                   |                  |        |  |
| Power                                                                             |               |          | AC 100-240 V (±10%, maximum voltage AC 25                                                              | 0 V), 50/60 Hz (±1                                                   | .0%), Consumption                          | on: 100 to 350 VA               |                   |                  |        |  |
| Display                                                                           |               |          | 5.7-inch                                                                                               | touch screen                                                         |                                            |                                 |                   |                  |        |  |
| Case                                                                              |               |          | VA-5000: 19-inch panel mou                                                                             | nt / VA-5000WM:                                                      | Mounted on wall                            |                                 |                   |                  |        |  |
|                                                                                   |               |          | VA-5000: 430 (W) × 380 (D) × 132 (H                                                                    | mm / Approx. 17                                                      | $^{7}$ (W) $\times$ 15 (D) $\times$ 5.2 (H | H) in                           |                   |                  |        |  |
| Dimensions                                                                        |               |          | Deozonator unit for CLA: 111 (W) × 95 (D) × 100 (H) mm                                                 | / Approx. 4.4 (w)                                                    | < 3.7 (D) × 3.9 (H) in                     | *protrusions exclu              | ıded              |                  |        |  |
|                                                                                   |               |          | VA-5000WM: 424 (w) x 206 (b) x 484 (H) mm / Approx. 17 (W) x 8 (b) x 19 (H) in *protrusions excluded   |                                                                      |                                            |                                 |                   |                  |        |  |
| Weight VA-5000: 7-18 kg, Approx. 15-40 lb / VA-5000WM: 14-24 kg, Approx. 31-53 lb |               |          |                                                                                                        |                                                                      |                                            |                                 |                   |                  |        |  |

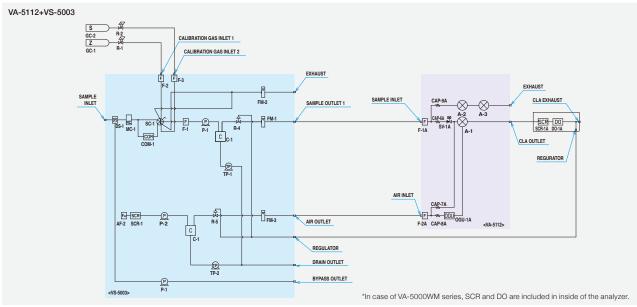

<sup>\*1</sup> When single component: flow rate is 0.5L/min (CLA: 0.3L/min)
\*2 Available when all components are NDIR and PMA

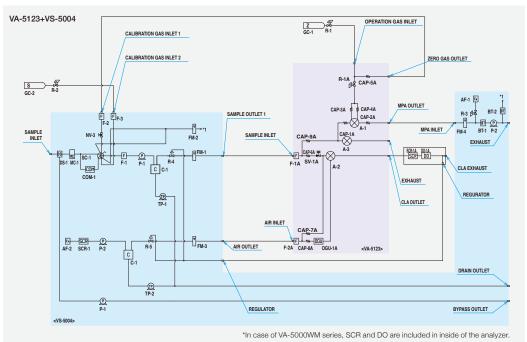

### VS-5000 Sampling Unit

| v3-3000 Sampling Offic |                                                                                                          |                                     |                                          |                                              |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|----------------------------------------------|--|--|--|--|--|
| Model                  | VS-5001                                                                                                  | VS-5002                             | VS-5003                                  | VS-5004                                      |  |  |  |  |  |
| Applicable principles  | NDIR, Galvanic cell, Dumb-Bell                                                                           | NDIR, Galvanic cell, MPA            | NDIR, Galvanic cell, CLA, Dumb-Bell      | NDIR, MPA, CLA                               |  |  |  |  |  |
| Form                   | 19 inch panel mount                                                                                      |                                     |                                          |                                              |  |  |  |  |  |
| Sampling method        | 5°C dry sampling                                                                                         |                                     |                                          |                                              |  |  |  |  |  |
| Materials              | SUS, PP, PVC, PVDF, PTFE, FKM, CR, Glass                                                                 |                                     |                                          |                                              |  |  |  |  |  |
| Flow rate              |                                                                                                          | 1.5 - 5.0 L/min                     |                                          |                                              |  |  |  |  |  |
| Sample supply          | 0.5 L/min x                                                                                              | x 1 system                          |                                          |                                              |  |  |  |  |  |
| Power                  | AC 100-240 V (±10%, maximum voltage AC 250 V), 50/60 Hz (±1%)                                            |                                     |                                          |                                              |  |  |  |  |  |
| Power consumption      | 150                                                                                                      | ) VA                                | 200                                      | VA                                           |  |  |  |  |  |
|                        | Sample inlet: φ8/φ6 mm PTFE joint, Sample outlet: φ6/φ4 mm PTFE joint                                    |                                     |                                          |                                              |  |  |  |  |  |
| Joint                  | Air outlet: $\phi 6/\phi 4$ mm PTFE joint, MPA inlet: $\phi 6/\phi 4$ mm PTFE joint                      |                                     |                                          |                                              |  |  |  |  |  |
| John                   | Regulator: $\phi$ 6/ $\phi$ 4 mm PTFE joint, Calibration inlet: RC1/8( $\phi$ 6/ $\phi$ 4 mm PTFE joint) |                                     |                                          |                                              |  |  |  |  |  |
|                        | Bypass outlet/Exhaust/Drain outlet:                                                                      |                                     |                                          |                                              |  |  |  |  |  |
| Sample gas conditions  | Ambient temperature, Dust: less                                                                          | than 0.1 mg/m³, H2O: less than 60   | °C saturation with drain pot (Approx     | x. 25% H <sub>2</sub> O), Pressure: ±980 Pa, |  |  |  |  |  |
| Campic gas conditions  | SO3: less than 50 ppm,                                                                                   | NO2: less than 6 ppm*2, (Corrosiv   | e gas, flammable gas and explosive       | e gas are not included)                      |  |  |  |  |  |
| Dimensions             | 430 (w) x                                                                                                | 550 (D) x 221 (H) mm / Approx. 17 ( | w) x 22 (D) x 8.7 (H) in (protrusions ex | cluded)                                      |  |  |  |  |  |
| Weight                 | 14 kg / 31 lb                                                                                            | 16 kg / 35 lb                       | 19 kg / 42 lb                            | 20 kg / 44 lb                                |  |  |  |  |  |


<sup>\*1</sup> Environmental temperature needs to be less than 35°C. If it's over 35°C, please consult HORIBA.
\*2 When the sample gas includes more than 6 ppm NO<sub>2</sub>, it needs to use optional NO<sub>x</sub> converter.


# Dimensional Outline for VS-5000 Sampling Unit Unit: mm (in)




# Flow sheet









# A : Analyzer Unit AF : Air Filter

BT : Buffer Tank
C : Thermo-electric

Dehumidifier CAP : Capillary COM : Converter

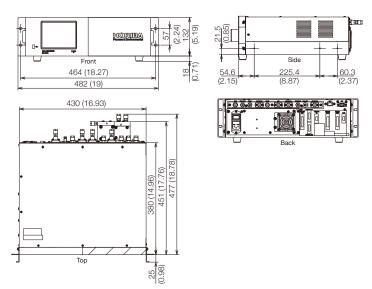
DO : Deozonizer DS : Drain Separator

F: Filter FM: Flowmeter

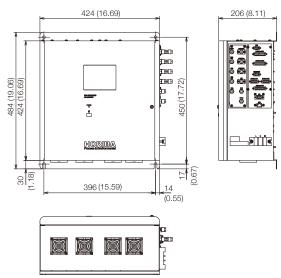
GC : Gas Cylinder MC : Mist Catcher

NV : Needle Valve OGU : Ozonizer

P : Pump


R : Pressure Regulator SC : Selector Valve

SCR : Scrubber SV : Solenoid Valve TP : Tubing Pump


# Dimensional Outlines Unit: mm (in)

Rubber feet, deozonator unit and mounting brackets (e.g. slide rails, and rack mounting plates) are optional.

#### VA-5000



### VA-5000WM



# Combined with complimentary HORIBA products, VA-5000 / VA-5000WM series offers wide range of solutions and applications to various fields and industries.

With consistent expertise in gas analysis, HORIBA provides analyzers for wide array of gases. The combination of VA-5000 series with complimentary HORIBA analyzers provides custom-made system solutions, which answers the diverse needs of different customers.



# Portable Gas Analyzer PG-300 Series

Capable of measuring five (5) different gas components using a single lightweight, portable, and robust unit. Used for emission monitoring, R&D (fuel cell), stack cross-checking, etc.





















# Magneto-Pneumatic Oxygen Analyzer **MPA-5000**

Sampling pump is installed inside the analyzer. Measurement can be started without an external sampling unit.\*1 Air carrier type: No need to prepare N<sub>2</sub> gas cylinder for carrier gas, which reduces running cost. N<sub>2</sub> carrier type: With N<sub>2</sub> carrier gas, 0-1 vol% measurement for O2 is available.

\*1 Sampling unit can be required depending on sample gas condition.





# Hydrogen Gas Analyzer TCA-5000

Designed to be used for a variety of applications including research and development, electrolytic cell for water electrolysis, small to medium size stationary fuel cells and other industrial applications.

H<sub>2</sub>



The HORIBA Group adopts IMS (Integrated Management System) which integrates Quality Management System ISO9001, Environmental Management System ISO14001, and Occupational Health and Safety Management System ISO45001 We have now integrated Business Continuity Management System ISO22301 in order to provide our products and services in a stable manner, even in emergencies



Please read the operation manual before using this product to assure safe and proper handling of the product.

- The specifications, appearance or other aspects of products in this catalog are subject to change without notice

- Please contact us with enquiries concerning further details on the products in this catalog.
  The color of the actual products may differ from the color pictured in this catalog due to printing limitations.
  It is strictly forbidden to copy the content of this catalog in part or in full.
  The screen displays shown on products in this catalog have been inserted into the photographs through compositing.
- All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.

# **HORIBA**

HORIBA, Ltd. **Group Head Office** 2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto, 601-8510, Japan Phone: 81 (75) 313-8121 Fax: 81 (75) 321-5725 https://www.horiba.com



Worldwide locations of HORIBA

Bulletin:HRE-2886E

Printed in Japan 2412SK00



# **Portable Gas Analyzer**

# PG-300 Series

 $N0x-S0_2-C0-C0_2-O_2-CH_4$ 

# Precision analyses, anywhere.







# Measurement So Easy It's Almost Instinctive

Portable and lightweight with laboratory-level precision.

# The New Possibilities of Gas Analysis Begin with "Precision Mobility"

For situations when you can only take measurements in the field, but you want the same precision that you get in the laboratory: HORIBA presents the PG-300 Portable Gas Analyzer. The PG-300 offers the same accuracy and reliability of laboratory measurements in a portable and durable unit that is 20% lighter with a faster response time than previous models. With less warm up time required, high visibility touch screen, accuracy in measuring five crucial components in the field and the durability to facilitate mobile measurement, the PG-300 is the analyzer of the future.

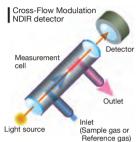
**Portable Gas Analyzer** 

PG-300 Series

 $N0x-S0_2-C0-C0_2-O_2-CH_4$ 



Field×Lab


- Cross-Flow Modulation type detector
- Capable of measuring methane (CH<sub>4</sub>)
- Less warm-up time
- Timer Function

- Data management with Ethernet and LAN
- SO₂ reduced response time
- Multi languages and Certificates
- Upgrade to IP42 (Ingress protection) version (option).

### Cross-Flow Modulation advanced efficiency of NDIR analysis

In PG-300, Cross-Flow Modulation is newly applied to SO<sub>2</sub>, CO, and new CH<sub>4</sub> analyzers. With Cross-Flow Modulation NDIR method, sample gas and reference gas flow into a single measurement cell

switching one by one, and it brings about advantages that no optical adjustment is required, the zero point is kept stable, and the sample cell remains clean and it reduces span drift. The equipments will be kept safe for a long time as well. Cross-Flow Modulation Chemiluminescence detection method is already introduced for NOx analyzer in previous model and has the same effects as aforesaid analyzers.



# Capable of measuring methane (CH<sub>4</sub>) for expanded options

Improving on previous models, the new PG-300 is equipped with a methane (CH<sub>4</sub>) analyzer that is ideally suited for many current and emerging applications such as biomass combustion.




## Ethernet communication facilitates data management\*1

Standard Ethernet interface for connection to LAN environment enables real-time data import.

# Collecting data over LAN network\*1

Following network connectivity on the PG-300, data uploads and status checking can be performed remotely over the network.





### Warm-up time has been signigicantly reduced

Reducing from 1 hour to 30 minute warm-up time, the PG-300 increases its readiness time for measurement.

# Timer function enables automatic instrument start and sleep modes

For example, setting the PG-300's automatic start time 30 minutes ahead of when measurements are needed eliminates your need to wait for the instrument to warm up; it will be ready when you are. There is also a sleep mode that reduces power use when the unit is idle.



# Reduced response time for SO<sub>2</sub> analyzer

The response time of the  $SO_2$  analyzer is faster than on previous models, increasing the overall measurement performance.

### Multi languages and Global certificates

<Languages>

English, Chinese, Korean, German, French, Russian, and Japanese <Certificates>

TÜV(EU), China, Korea, Japan, MCERTS(UK), GOST(Russia)

### Upgrade to IP42 version (Optionally available)

A special rear cover is attached to prevent intrusion of water droplets and solid matter, and it is resistant to light rain.

#### IP=Ingress protection

IP42 means protection against solid objects of 1 mm diameter and greater, and vertically falling water drops when enclosure is tilted up to 15 degrees. Wiping off water drops on the measuring spots are necessary in order to obtain accurate value.



# Rugged Lightweight Design

20% lighter than previous models, the PG-300 is your choice for portability. Side guards are available to prevent unexpected impacts during transport.

PG-300 provides full support for your field measurements and analyses.



Lightweight makes it easy to transport.

- SD™ memory card slot
- Screen capture function
- On screen quidance
- Color trend graph

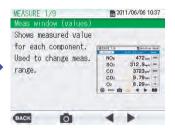
# **■** Equipped with an SD<sup>™</sup> memory card slot to enable data to be saved immediately

SD™ memory card slot accessed from the front of the instrument enables necessary data to be saved on the spot in the universal CSV format.

The SD™ card slot is located on the front ▶ of the unit for easy access.



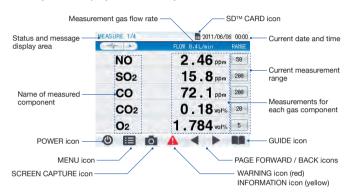
# Screen capture function enables data to be saved immediately as a bitmap image onto the SD memory card.


No paper or pen required - simply touch the SCREEN CAPTURE icon and a screen shot is stored in memory.

### On screen guidance function allows you to confirm review operating procedures instantly

The simple guidance function provides assistance when you forget how to perform an operation. You can review regular operational procedures or important points right on the screen.

### [Sample display screens]






and then the screen shows information that you can handle at the current operation

# LCD touch screen improves ease of operation

All operations, including calibration, measurement and saving on-screen data, can be performed on the touch screen. The high visibility color display makes it easy to check the status.



## Easy real time analysis using the color trend graph

A convenient color trend graph function enables gas component trends as a function of time to be confirmed at a glance.

### [Color trend graph]

| FLOW       | 8.7 L/min        |
|------------|------------------|
| 100        | NO<br>31.1 ppm   |
|            | NO<br>93.2 ppm   |
| *S-4       | NO<br>15,2 ppm   |
| 0          | NO<br>45.7 ppm   |
| 6 min TIME | O2<br>83,02 vol% |

### [Calibration screen]

| LINE            | CAL       | FLOW | 0.5L/min |        |
|-----------------|-----------|------|----------|--------|
|                 |           | CAL  | ZER0     | SPAN   |
| NO              | 26.1 ppm  | ZER0 | 32       | 1.0000 |
| SO <sub>2</sub> | 92.0 ppm  |      | 1        | 1.0000 |
| CO              | 19.3 ppm  | ZERO | 2        | 1.0000 |
| CO2             | 2.38 vol% | ZERO | 6        | 1.0000 |
| 02              | 4.20 vo1% | ZERO | 16       | 1.0000 |

Note: Calibration requires separately purchased calibration gas and pressure regulator.



• Front panel LED's clearly display unit status.



Easy-to-operate unit yields precision analysis results.



Color LCD touch screen with high visibility display.

# ■ Analyzer Specifications

| Type of Analyzers      | 2 com<br>Anal      | ponent<br>lyzer                                                                                                                                                                                                                                                                                           |                                    | 3 component<br>Analyzer | t                                   | 4 component<br>Analyzer                | 5 component<br>Analyzer                                 | 2 component<br>Analyzer          | 4 component<br>Analyzer |  |
|------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------|--|
| Model                  | PG-320             | PG-325                                                                                                                                                                                                                                                                                                    | PG-330                             | PG-335                  | PG-337                              | PG-340                                 | PG-350                                                  | PG-324                           | PG-344                  |  |
| Components Measured    | CO/CO <sub>2</sub> | NOx/O <sub>2</sub>                                                                                                                                                                                                                                                                                        | CO/CO <sub>2</sub> /O <sub>2</sub> | NOx/CO/O <sub>2</sub>   | NOx/SO <sub>2</sub> /O <sub>2</sub> | NOx/CO/CO <sub>2</sub> /O <sub>2</sub> | NOx/SO <sub>2</sub> /CO/CO <sub>2</sub> /O <sub>2</sub> | CH <sub>4</sub> /CO <sub>2</sub> | CH4/CO/CO2/O2           |  |
| Analysis Principle     |                    | NOx: Cross-Flow Modulation Chemiluminescence Detection Method SO <sub>2</sub> ,CO,CH <sub>4</sub> : Cross-Flow Modulation Non-Dispersive Infrared Absorption Method CO <sub>2</sub> : Non-Dispersive Infrared Absorption Method O <sub>2</sub> : Galvanic Method, Zirconia Method, or Paramagnetic Method |                                    |                         |                                     |                                        |                                                         |                                  |                         |  |
| Ranges                 |                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                      |                                    |                         |                                     |                                        |                                                         |                                  | /5000 ppm<br>/20 vol%   |  |
| Repeatability          |                    | ±0.5% of Full scale (NOx : ≥ 100 ppm range / CO : ≥ 1000 ppm range)<br>±1.0% of Full scale (Except above) ±1.0% of Full scale                                                                                                                                                                             |                                    |                         |                                     |                                        |                                                         |                                  |                         |  |
| Linearity              |                    | ±2.0% of Full scale                                                                                                                                                                                                                                                                                       |                                    |                         |                                     |                                        |                                                         |                                  |                         |  |
| Drift                  |                    | ±1.0                                                                                                                                                                                                                                                                                                      | % of Full scal                     | e / day (For S          | O2 analyzer or                      | ly: ±2.0% of Full                      | scale / day)                                            | ±1.0% of Ful                     | I scale / day           |  |
| Response Time (Td+T90) |                    | Analyzers except SO <sub>2</sub> analyzer : 45 sec. or less (From sample inlet)  SO <sub>2</sub> analyzer : 180 sec. or less (From sample inlet)                                                                                                                                                          |                                    |                         |                                     |                                        |                                                         |                                  |                         |  |
| Sample Gas Flow Rate   |                    |                                                                                                                                                                                                                                                                                                           |                                    |                         | Ap                                  | prox. 0.5 L/min.                       |                                                         |                                  |                         |  |
| Display                |                    |                                                                                                                                                                                                                                                                                                           |                                    | Measur                  | ement (3 or 4                       | digit display), rang                   | e, flow rate, etc.                                      |                                  |                         |  |
| Output                 |                    |                                                                                                                                                                                                                                                                                                           | DC                                 | 2 4-20 mA (no           | n-insulated) o                      | r 0-1 V (non-insula                    | ted) [optional] / Etherne                               | et                               |                         |  |
| Warm-up Time           |                    |                                                                                                                                                                                                                                                                                                           |                                    | With 3                  | 30 min. warm-                       | up, ±2.0% of Full s                    | scale / 2 hours                                         |                                  |                         |  |
| Data Saving            |                    |                                                                                                                                                                                                                                                                                                           |                                    |                         | SD™/SI                              | DHC™ memory ca                         | rd                                                      |                                  |                         |  |
| Ambient Temperature    |                    |                                                                                                                                                                                                                                                                                                           |                                    |                         | 0□ to 4                             | 10□ / 32°F to 104°F                    |                                                         |                                  |                         |  |
| Ambient Humidity       |                    |                                                                                                                                                                                                                                                                                                           |                                    | (For tempe              |                                     | relative humidity                      | 80%<br>early to 50% at 40□)                             |                                  |                         |  |
| Power                  |                    |                                                                                                                                                                                                                                                                                                           |                                    | AC 10                   | 00 V - 240 V ±1                     | 0% (maximum 25                         | 0 V), 50/60 Hz                                          |                                  |                         |  |
| Power Consumption      |                    |                                                                                                                                                                                                                                                                                                           |                                    | Appro                   | ox. 160 VA in a                     | steady state, max                      | kimum 220 VA                                            |                                  |                         |  |
| Outline                |                    |                                                                                                                                                                                                                                                                                                           |                                    |                         |                                     |                                        | x 10.2" (H) (without side x 10.2" (H) (with side gu     |                                  | ections excluded)       |  |
| Mass                   |                    |                                                                                                                                                                                                                                                                                                           |                                    | Ар                      | prox. 13 kg to                      | 15 kg / Approx. 29                     | 9 lb to 33 lb                                           |                                  |                         |  |
| Environmental rating   |                    |                                                                                                                                                                                                                                                                                                           |                                    |                         | IP42(C                              | ptionally available                    | )                                                       |                                  |                         |  |
| Sample Gas Conditions  | Tempera            | ture : Amb                                                                                                                                                                                                                                                                                                |                                    |                         |                                     | '                                      | saturation, Dust : 0.1 g/N<br>ve gas or measured gas    | ,                                | sure : ±0.98 kPa        |  |

\* For Paramagnetic Method, please contact HORIBA representative in your area for the details.

SD is a trade mark for SD-3C, LLC.
 TAKE GREAT CARE WHEN HANDLING SAMPLE GASES CONTAINING TOXIC OR FLAMMABLE GASES. TAKE MEASURES SUCH AS PROVIDING ADEQUATE VENTILATION, INSTALLING GAS

DETECTORS, AND REMOVING IGNITION SOURCES IN THE WORKING AREA.

• THE PG-300 SERIES IS NOT EXPLOSION-PROOF. DO NOT USE THIS PRODUCT IN A HAZARDOUS LOCATION OR FOR MEASUREMENT OF SAMPLE GASES IN EXPLOSIVE ATMOSPHERES (MIXTURE OF A COMBUSTIBLE GAS AND AIR WITHIN THE FLAMMABILITY LIMITS). HORIBA, LTD. AND ITS AFFILIATES ARE NOT LIABLE FOR EMERGENCIES CAUSED BY LEAKAGE OR MISHANDLING OF SUCH GASES.

### ■ Standard Accessories

| Part Name        | Specifications                                              | Quantity |
|------------------|-------------------------------------------------------------|----------|
| Filter element   | For reference line                                          | 24       |
| Signal cable     | For analog output (2 m) with connector                      | 1        |
| Power cord       | 2.5 m                                                       | 1        |
| Tube             | $\phi$ 6/ $\phi$ 4PTFE tube 0.12 m (for mist catcher short) | 1        |
| Tube             | $\phi$ 6/ $\phi$ 4PTFE tube 5 m (for sample)                | 1        |
| Tube             | $\phi$ 9/ $\phi$ 5 Imron tube 5 m (for exhaust)             | 1        |
| Tube             | $\phi$ 9/ $\phi$ 5 Imron tube 1 m (for drain discharge)     | 1        |
| Joint            | $\phi$ 6 straight (for sample tube)                         | 1        |
| Cover            | Dust cover (for storage)                                    | 1        |
| SD™ memory card  | 512 MB                                                      | 1        |
| Galvanic O2 cell | R22-A                                                       | 1*       |

<sup>•</sup> Separate tubing and joint are required if a pretreatment unit is added.

# Replacement parts

Replacement part intervals assume 8 hours of operation per day. Replacement interval may be more frequent depending on measurement gas conditions and use conditions.

# [Consumable Items]

| Name               | Replace Every (general guideline) | Notes              |
|--------------------|-----------------------------------|--------------------|
| Mist catcher       | 3 months                          | MC-025             |
| Scrubber           | 3 months                          | For reference line |
| Air filter element | 2 weeks                           | For reference line |

### [Replacement Parts]

| Name                            | Replace Every (general guideline) | Notes                |
|---------------------------------|-----------------------------------|----------------------|
| Pump                            | 1 year                            | Replace when broken  |
| NOx converter catalyst          | 1 year                            | For NOx analyzer*    |
| Zero gas purifier unit catalyst | 1 year                            | *                    |
| Ozone generator                 | 1 year                            | For NOx analyzer*    |
| Deozonizer                      | 1 year                            | For NOx analyzer*    |
| CR2032 battery                  | 5 years                           | For clock backup     |
| Galvanic O₂ cell                | 1 year                            | Replace when broken* |

<sup>\*</sup> Differs depending on model

<sup>\*</sup> Differs depending on model.





# Drain separator unit Drain pot unit

When the gas sample includes moisture ranging from ambient temperature saturation to 40 °C saturation, a Drain Separator and Drain Pot are installed at the stage before the analyzer unit.

### ■ Drain separator unit / Drain pot unit specifications

| Model                            |             | DS-300 (drain separator)                                | DP-300 (drain pot)   |
|----------------------------------|-------------|---------------------------------------------------------|----------------------|
|                                  | Temperature | 0□ to 40□ / 3                                           | 2°F to 104°F         |
| Sample conditions (at feed port) | Moisture    | Ambient temperature saturation ~ 40□ / 104°F saturation |                      |
|                                  | Dust        | 0.1 g/m                                                 | <sup>3</sup> or less |
|                                  | Pressure    | ±0.98 kPa                                               | ±4.9 kPa             |

### ■ Electronic cooler unit

When the gas sample includes moisture exceeding 40 °C saturation, or when conducting continuous measurement (for five days or less), a thermoelectric cooler is installed at the stage before the analyzer unit. The electronic cooler unit can also accommodate low-temperature SO<sub>2</sub> measurements.



#### ■ Electronic Cooler unit specifications

| PS-300                                                                                                |  |
|-------------------------------------------------------------------------------------------------------|--|
| Ti, SUS, PVC, PTFE, FKM, PVDF, PP, Glass                                                              |  |
| Approx. 2 L/min.                                                                                      |  |
| 15□ / 59°F saturated                                                                                  |  |
| 0□ to 40□ / 32°F to 104°F                                                                             |  |
| 85% or less                                                                                           |  |
| 100/110/115/120/220/230/240 V AC, 50 Hz/60 Hz (depend on specifications                               |  |
| 260(W) x 375(D) x 235(H) mm / 10.2"(W) x 14.7"(D) x 9.2"(H) (except for protrusion)                   |  |
| Approx. 12kg / 26.46 lb                                                                               |  |
| Temperature: Ambient temperature, Dust: 0.1g/m³ or less,<br>Moisture: H₂O≦20 vol%, Pressure: ±4.9 kPa |  |
|                                                                                                       |  |

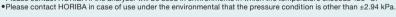
#### [Halogen scrubber] (optional)

The Halogen scrubber can be built into the electronic cooling unit as an option. It is used to prevent corrosion of the cells, tubes and other internal components when the gas analyzer is operated at waste incineration facilities or in other situations where the gas sample includes Cl<sub>2</sub>.

### Primary side filter probe

Either of two types may be selected depending on use.




### Primary side filter probe specifications

| Model                   |             | Simple probe               | SE3 (flue probe)           |
|-------------------------|-------------|----------------------------|----------------------------|
| Probe length (standard) |             | 10 cm / 3.937"             | 1 m / 3'28"                |
|                         | Temperature | 0□ to 50□ / 32°F to 122°F* | 0□ to 120□ / 32°F to 248°F |
| Sample conditions       | Moisture    | 40 vol% or less            |                            |
| (at feed port)          | Dust        | 0.1 g/m                    | <sup>3</sup> or less       |
|                         | Pressure    | ±2.94                      | 4 kPa                      |

\*At flange inlet

Note:

Please contact HORIBA if the analyzer will be used in environments in which the temperature exceeds 120 °C.

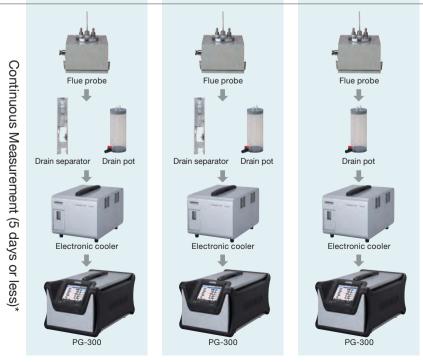






# **■**PG-300 Carrying Case

### ■ Specifications

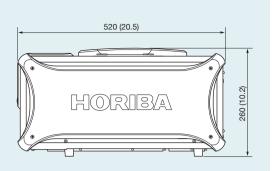

| Model      | PG-300 Carrying Case                                             |  |  |
|------------|------------------------------------------------------------------|--|--|
| Outline    | 630 (W) x 492 (D) x 352 (H) mm 24.8" (W) x 19.3" (D) x 13.8" (H) |  |  |
| Mass       | 12kg / 26.4lb                                                    |  |  |
| Materials  | Case: Polypropylene Interior: Ethylene foam                      |  |  |
| Equipments | Carry handle, casters, handles, etc.                             |  |  |



### ■ Upgrade to IP42 (ingress protection) version

A special rear cover is attached to prevent intrusion of water droplets and solid matter, and it is resistant to light rain.

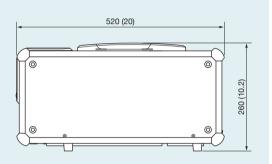



Note: Consult HORIBA regarding probe material and other matters relating to applications.

<sup>\*</sup> For measurements exceeding 5 days, please contact HORIBA.

• PG-300 Series Analyzer Unit








• PG-300 Series Analyzer Unit (Side guards excluded)









The HORIBA Group adopts IMS (Integrated Management System) which integrates Quality Management System IS09001. Environmental Management System IS014001. and Occupational Health and Safety Management System ISO45001 We have now integrated Business Continuity Management System ISO22301 in order to provide our products and services in a stable manner, even in emergencies



### Please read the operation manual before using this product to assure safe and proper handling of the product.

- The specifications, appearance or other aspects of products in this catalog are subject to change without notice
- Please contact us with enquiries concerning further details on the products in this catalog.
   The color of the actual products may differ from the color pictured in this catalog due to printing limitations.
- It is strictly forbidden to copy the content of this catalog in part or in full.
   The screen displays shown on products in this catalog have been inserted into the photographs through compositing.
   All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.

# http://www.horiba.com

HORIBA, Ltd. Japan Head Office

2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto, 601-8510, Japar Phone: 81 (75) 313-8121 Fax: 81 (75) 321-5725

HORIBA (Thailand) Limited

East Office

850 / 7 Soi Lat Krabang 30 / 5, Lat Krabang Road, Lat Krabang, Bangkok 10520. Thailand

Phone: 66 (0) 2734 4434 Fax: 66 (0) 2734 4438

HORIBA Instruments (Singapore) Pte Ltd. Singapore

3 Changi Business Park Vista #01-01, Akzonobel House, Singapore 486051

Phone: 65 (6) 745-8300 Fax: 65 (6) 745-8155

HORIBA Instruments (Singapore) Pte Ltd., Manila Office Philippines

27 / F Tower 2, Enterprise Center 6766, Ayala Avenue cor Paceo de Roxas, Makati City, Philippines,1226 Phone: 63 (2) 8885-8500

HORIBA Vietnam Company Limited

Vietnam

USA

Lot 3 and 4, 16 Floor, Detech Tower II, No.107 Nguyen Phong Sac Street, Dich Vong Hau Ward, Cau Giay District, Hanoi, Vietnam Phone: 84 (24) 3795-8552 Fax: 84 (24) 3795-8553

PT HORIBA Indonesia Indonesia

Jl. Jalur Sutera Blok 20A, No.16-17, Kel. Kunciran, Kec. Pinang Tangerang-15144, Indonesia

Phone: 62 (21) 3044-8525 Fax: 62 (21) 3044-8521

**HORIBA Instruments Incorporated** 

9755 Research Drive, Irvine, CA 92618, U.S.A Phone: 1 (949) 250-4811 Fax: 1 (949) 250-0924 **Houston Office** 

5390 Bay Oaks Drive, Pasadena, TX 77505 Phone: 1 (281) 482-4334 Fax: 1 (281) 674-6058 HORIBA (China) Trading Co., Ltd.

China Unit D, 1F, Building A, Synnex International Park, 1068 West Tianshan Road, 200335, Shanghai, China Phone: 86 (21) 6289-6060 Fax: 86 (21) 6289-5553

**Beijing Branch** 

12F, Metropolis Tower, No.2, Haidian Dong 3 Street, Beijing, 100080 China

Phone: 86 (10) 8567-9966 Fax: 86 (10) 8567-9066 Guangzhou Branch

Rm 1611/1612, Goldlion Digital Network Center.

138 Tiyu Road East Guangzhou 510620, China Phone: 86 (20) 3878-1883 Fax: 86 (20) 3878-1810

HORIBA Taiwan, Inc.

Taiwan

8F.-8, No.38, Taiyuan St. Zhubei City, Hsinchu County 30265,

Phone: 886 (3) 560-0606 Fax: 886 (3) 560-0550

HORIBA KOREA Ltd.

Korea

25, 94-Gil, Iljik-Ro, Manan-Gu, Anyang-Si, Gyeonggi-Do, 13901, Korea Phone: 82 (31) 296-7911 Fax: 82 (31) 296-7913

**HORIBA India Private Limited** 

246, Okhla Industrial Estate, Phase 3 New Delhi-110020, India Phone: 91 (11) 4646-5000 Fax: 91 (11) 4646-5020

**Technical Center** 

D-255, Chakan MIDC Phase-II, Bhamboli Village, Pune-410501, India Phone: 91 (21) 3567-6000

**Bangalore Office** 

Phone: 91 (80) 4127-3637

No.55, 12th Main, Behind BDA Complex, 6th sector, HSR Layout, Bangalore South, Bangalore-560102, India

HORIBA Instruments Brasil, Ltda.

Brazil

Rua Presbitero Plinio Alves de Souza, 645, Loteamento Multivias, Jardim Ermida II - Jundiai Sao Paulo - CEP 13.212-181 Brazil

Phone: 55 (11) 2923-5400 Fax: 55 (11) 2923-5490

**HORIBA UK Limited** 

Kyoto Close Moulton Park Northampton NN3 6FL UK Phone: 44 (0) 1604 542500 Fax: 44 (0) 1604 542699

HORIBA Europe GmbH Germany

Hans-Mess-Str.6, D-61440 Oberursel, Germany Phone: 49 (6172) 1396-0 Fax: 49 (6172) 1373-85 Leichlingen Office

Julius-kronenberg Str.9. D-42799 Leichlingen, Germany Phone: 49 (2175) 8978-0 Fax: 49 (2175) 8978-50

**HORIBA Europe Research Center** 

France Avenue de la Vauve-Passage Jobin Yvon-CS 45002-91120 Palaiseau-France

Phone: 33 (1) 69-74-72-00 Fax: 33 (1) 69-31-32-20

HORIBA Europe GmbH Sweden

Sweden Branch (Gothenburg)

Grimboasen 10 A, S-417 49 Gothenburg, Sweden Phone: (46) 10-161-1500 Fax: (46) 10-161-1503

**HORIBA Czech** Czech

**Prague Office** 

Prumyslova 1306 / 7, CZ-10200, Praha 10, Czech Republic Phone: 420 (2) 460-392-65

HORIBA (Austria) GmbH

Austria

Kaplanstrasse 5, A-3430 Tulln, Austria Phone: 43 (2272) 65225 Fax: 43 (2272) 65225-45

HORIBA (Austria) GmbH

Romania Branch

B-dul.Republicii, nr. 164, Etaj Parter, Birourile nr. 3 si 4, Pitesti, 110177, judetul Arges Romania Phone: 40 (348) 807117 Fax: 40 (348) 807118

Printed in Japan 2012SK00

Explore the future

Romania